Understanding the noise affecting a quantum device is of fundamental importance for scaling quantum technologies. A particularly important class of noise models is that of Pauli channels, as randomized compiling techniques can effectively bring any quantum channel to this form and are significantly more structured than general quantum channels. In this paper, we show fundamental lower bounds on the sample complexity for learning Pauli channels in diamond norm with unentangled measurements. We consider both adaptive and non-adaptive strategies. In the non-adaptive setting, we show a lower bound of $\Omega(2^{3n}\epsilon^{-2})$ to learn an $n$-qubit Pauli channel. In particular, this shows that the recently introduced learning procedure by Flammia and Wallman is essentially optimal. In the adaptive setting, we show a lower bound of $\Omega(2^{2.5n}\epsilon^{-2})$ for $\epsilon=\mathcal{O}(2^{-n})$, and a lower bound of $\Omega(2^{2n}\epsilon^{-2} )$ for any $\epsilon > 0$. This last lower bound even applies for arbitrarily many sequential uses of the channel, as long as they are only interspersed with other unital operations.
翻译:了解影响量子装置的噪音对于推广量子技术至关重要。 一种特别重要的噪音模型是保利频道, 随机化的汇编技术可以有效地将任何量子频道引入这种形式, 并且比一般量子频道结构化得多。 在本文中, 我们展示了在钻石规范中学习保利频道的样本复杂性的基本较低界限, 且测量不纠缠。 我们考虑的是适应性和非适应性策略。 在非适应性环境下, 我们展示了较低的约束值$( Omega) (2 ⁇ 3n ⁇ epsilon) 和2美元( $), 学习一个美元- qubit Pauli 频道。 特别是, 这表明最近Flammia 和 Wallman 引入的学习程序基本上是最佳的。 在适应性环境中, 我们展示了一个较低约束值$( 2 ⁇ 2.5n ⁇ ) 和 非适应性策略。 在非适应性环境下, 我们展示了较低的约束值为$( 2 ⁇ - n) $( 2 ⁇ - n) 和 $( $) 更低约束值) 学习一个美元- Pauli 频道。 特别是, 这显示最近引入的学习程序基本上仅用于任何连续操作。