The underwater propagation environment for visible light signals is affected by complex factors such as absorption, shadowing, and reflection, making it very challengeable to achieve effective underwater visible light communication (UVLC) channel estimation. It is difficult for the UVLC channel to be sparse represented in the time and frequency domains, which limits the chance of using sparse signal processing techniques to achieve better performance of channel estimation. To this end, a compressed sensing (CS) based framework is established in this paper by fully exploiting the sparsity of the underwater visible light channel in the distance domain of the propagation links. In order to solve the sparse recovery problem and achieve more accurate UVLC channel estimation, a sparse learning based underwater visible light channel estimation (SL-UVCE) scheme is proposed. Specifically, a deep-unfolding neural network mimicking the classical iterative sparse recovery algorithm of approximate message passing (AMP) is employed, which decomposes the iterations of AMP into a series of layers with different learnable parameters. Compared with the existing non-CS-based and CS-based schemes, the proposed scheme shows better performance of accuracy in channel estimation, especially in severe conditions such as insufficient measurement pilots and large number of multipath components.


翻译:可见光信号的水下传播环境受到吸收、阴影和反射等复杂因素的影响,因此,实现有效的水下可见光通信(UVLC)频道估计非常困难,UVLC频道很难在时间和频率域中被稀释,这限制了使用稀少的信号处理技术来提高频道估计性能的机会。为此,本文件建立了一个以压缩遥感为基础的框架,充分利用水下可见光频道在传播链接的远程域内的宽度,从而充分利用水下可见光频道在传播链接的远程域内的宽度。与现有的非CS型和基于CS的系统相比,提议的基于水下可见光频道估计的稀疏学习计划显示以水下可见光频道为基础的稀疏广光频道估计(SL-UVCE)计划。具体地说,采用了一个深宽宽的神经网络来模拟光源传递(AMP)的典型迭代稀少恢复算法,将AMP的迭代转换成一系列具有不同可学习参数的层。与现有的非CS型和基于CS的系统计划相比,拟议的计划显示频道估计准确性的性表现得,特别是在大量试验和严重的条件下。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
0+阅读 · 2023年5月2日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
3+阅读 · 2013年12月31日
国家自然科学基金
10+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员