Unsupervised methods have showed promising results on monocular depth estimation. However, the training data must be captured in scenes without moving objects. To push the envelope of accuracy, recent methods tend to increase their model parameters. In this paper, an unsupervised learning framework is proposed to jointly predict monocular depth and complete 3D motion including the motions of moving objects and camera. (1) Recurrent modulation units are used to adaptively and iteratively fuse encoder and decoder features. This not only improves the single-image depth inference but also does not overspend model parameters. (2) Instead of using a single set of filters for upsampling, multiple sets of filters are devised for the residual upsampling. This facilitates the learning of edge-preserving filters and leads to the improved performance. (3) A warping-based network is used to estimate a motion field of moving objects without using semantic priors. This breaks down the requirement of scene rigidity and allows to use general videos for the unsupervised learning. The motion field is further regularized by an outlier-aware training loss. Despite the depth model just uses a single image in test time and 2.97M parameters, it achieves state-of-the-art results on the KITTI and Cityscapes benchmarks.


翻译:未经监督的方法在单层深度估计方面显示出有希望的结果。 但是, 培训数据必须在不移动对象的情况下在场景中捕捉, 推动精确度的范围, 最近的方法往往会增加其模型参数。 在本文中, 提议一个未经监督的学习框架, 共同预测单层深度并完成三维运动, 包括移动对象和相机的动作。 (1) 经常调制器用于适应性和迭接性引信编码器和解密器的特性。 这不但改善了单层深度推断, 也不致超过模型参数。 (2) 使用一套过滤器进行升级, 而不是使用一套单一的过滤器, 设计出多套过滤器进行余层取样。 这有助于学习边缘保护过滤器, 并导致改进性能。 (3) 使用基于扭曲的网络来估计物体移动的运动场, 而不使用语系先前的语系。 这打破了场景的僵硬性要求, 并允许使用一般的视频进行不超强的学习。 (2) 运动场被进一步固定化, 而不是用一套外观训练损失的过滤器, 设计。 尽管深度模型测试了城市2.97 标准, 也使用了单一图像基准 。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月28日
Arxiv
0+阅读 · 2023年4月26日
Memory-Gated Recurrent Networks
Arxiv
12+阅读 · 2020年12月24日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员