We study a fundamental question concerning adversarial noise models in statistical problems where the algorithm receives i.i.d. draws from a distribution $\mathcal{D}$. The definitions of these adversaries specify the type of allowable corruptions (noise model) as well as when these corruptions can be made (adaptivity); the latter differentiates between oblivious adversaries that can only corrupt the distribution $\mathcal{D}$ and adaptive adversaries that can have their corruptions depend on the specific sample $S$ that is drawn from $\mathcal{D}$. In this work, we investigate whether oblivious adversaries are effectively equivalent to adaptive adversaries, across all noise models studied in the literature. Specifically, can the behavior of an algorithm $\mathcal{A}$ in the presence of oblivious adversaries always be well-approximated by that of an algorithm $\mathcal{A}'$ in the presence of adaptive adversaries? Our first result shows that this is indeed the case for the broad class of statistical query algorithms, under all reasonable noise models. We then show that in the specific case of additive noise, this equivalence holds for all algorithms. Finally, we map out an approach towards proving this statement in its fullest generality, for all algorithms and under all reasonable noise models.


翻译:我们研究关于统计问题中的对抗性噪音模型的基本问题,因为算法从一个分布式的 $\ mathcal{D} 美元中提取。这些对手的定义具体指明了允许腐败的类型(噪音模式)以及何时可以进行这些腐败(适应性);后者区分了那些只能腐蚀分配的明显对手(mathcal{D}美元)和能够有其腐败的适应性对手之间的基本问题。我们的第一个结果显示,在所有合理的噪音模式下,对于广泛的统计查询算法来说,这确实是典型的样板。然后,我们表明,在所有研究的噪音模型中,算法的算法和算法中,所有最接近的比喻,最后,在最接近的模型中,我们用最接近的算法来证明,所有最接近的算法,我们用最接近的算法来证明,所有最接近的算法,我们用最接近的算法,最后,我们用最接近的算法来证明,所有最接近的算法。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2022年1月22日
Arxiv
0+阅读 · 2022年1月21日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员