We demonstrate the effectiveness of an adaptive explicit Euler method for the approximate solution of the Cox-Ingersoll-Ross model. This relies on a class of path-bounded timestepping strategies which work by reducing the stepsize as solutions approach a neighbourhood of zero. The method is hybrid in the sense that a convergent backstop method is invoked if the timestep becomes too small, or to prevent solutions from overshooting zero and becoming negative. Under parameter constraints that imply Feller's condition, we prove that such a scheme is strongly convergent, of order at least 1/2. Control of the strong error is important for multi-level Monte Carlo techniques. Under Feller's condition we also prove that the probability of ever needing the backstop method to prevent a negative value can be made arbitrarily small. Numerically, we compare this adaptive method to fixed step implicit and explicit schemes, and a novel semi-implicit adaptive variant. We observe that the adaptive approach leads to methods that are competitive in a domain that extends beyond Feller's condition, indicating suitability for the modelling of stochastic volatility in Heston-type asset models.
翻译:我们展示了一种适应性明确的 Euler 方法对于Cox-Ingersoll-Ross模型的近似解决方案的有效性。 这依赖于一系列路径定时战略, 其作用是减少作为解决方案的步态, 接近零区。 这种方法是混合的, 也就是说, 如果时间步太小, 或防止解决方案过度排除零和变成负的, 则会引用一种趋同性支持性支持性支持性方法。 在暗示Feller条件的参数限制下, 我们证明这种方案非常趋同, 至少顺序1/2。 控制强烈错误对于多层次的Monte Carlo技术很重要。 在Feller的条件下, 我们还可以证明, 永远需要后站式方法来防止负值的可能性会被任意缩小。 从数字上看, 我们把这种适应性方法比作固定的隐含和清晰的计划, 以及一个新的半隐含性的适应性适应性变式。 我们观察到, 适应性方法导致在超出Feller条件的领域中具有竞争性的方法, 表明在赫斯顿型资产模型中, 的模型是否适合。