We study the problem of learning control policies for complex tasks given by logical specifications. Recent approaches automatically generate a reward function from a given specification and use a suitable reinforcement learning algorithm to learn a policy that maximizes the expected reward. These approaches, however, scale poorly to complex tasks that require high-level planning. In this work, we develop a compositional learning approach, called DiRL, that interleaves high-level planning and reinforcement learning. First, DiRL encodes the specification as an abstract graph; intuitively, vertices and edges of the graph correspond to regions of the state space and simpler sub-tasks, respectively. Our approach then incorporates reinforcement learning to learn neural network policies for each edge (sub-task) within a Dijkstra-style planning algorithm to compute a high-level plan in the graph. An evaluation of the proposed approach on a set of challenging control benchmarks with continuous state and action spaces demonstrates that it outperforms state-of-the-art baselines.


翻译:我们研究的是逻辑规格规定的复杂任务的学习控制政策问题。 最近的方法自动从特定规格中产生奖励功能,并使用适当的强化学习算法来学习尽可能增加预期报酬的政策。 但是,这些方法规模不高,不足以完成需要高层规划的复杂任务。 在这项工作中,我们开发了一种组成学习方法,称为DirL, 它将高级规划和强化学习与高级规划和强化学习相隔。 首先, DirL 将规格编码为抽象图; 直观、 垂直和图形边缘分别对应于州空间的区域和较简单的子任务。 我们的方法随后纳入强化学习学习, 学习用于Dijstra型规划算法中每个边缘(子任务)的神经网络政策, 以在图表中计算一个高级计划。 对一套具有挑战性的、 持续状态和行动空间的控制基准的拟议方法的评估表明,它超越了最先进的基线。

0
下载
关闭预览

相关内容

【Cell】神经算法推理,Neural algorithmic reasoning
专知会员服务
29+阅读 · 2021年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
6+阅读 · 2021年6月24日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
4+阅读 · 2020年3月19日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
6+阅读 · 2021年6月24日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
4+阅读 · 2020年3月19日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
Top
微信扫码咨询专知VIP会员