Current State-of-the-Art models in Named Entity Recognition (NER) are neural models with a Conditional Random Field (CRF) as the final network layer, and pre-trained "contextual embeddings". The CRF layer is used to facilitate global coherence between labels, and the contextual embeddings provide a better representation of words in context. However, both of these improvements come at a high computational cost. In this work, we explore two simple techniques that substantially improve NER performance over a strong baseline with negligible cost. First, we use multiple pre-trained embeddings as word representations via concatenation. Second, we constrain the tagger, trained using a cross-entropy loss, during decoding to eliminate illegal transitions. While training a tagger on CoNLL 2003 we find a $786$\% speed-up over a contextual embeddings-based tagger without sacrificing strong performance. We also show that the concatenation technique works across multiple tasks and datasets. We analyze aspects of similarity and coverage between pre-trained embeddings and the dynamics of tag co-occurrence to explain why these techniques work. We provide an open source implementation of our tagger using these techniques in three popular deep learning frameworks --- TensorFlow, Pytorch, and DyNet.


翻译:在命名实体识别(NER)中,目前最先进的模型是神经模型,以有条件随机字段(CRF)作为最后的网络层,以及经过预先训练的“理论嵌入””。通用报告格式层用于促进标签之间的全球一致性,而背景嵌入则提供了更好的文字表达方式。但是,这两个改进都是以高计算成本取得的。在这项工作中,我们探索了两种简单技术,在强大的基线基础上大大改进净化性能,费用微不足道。首先,我们使用多种预先训练的嵌入作为通过连接的文字表达方式。第二,我们限制调试器,在解码消除非法过渡期间,用交叉作物损耗进行训练。在2003年CONLLL(C)上培训一个调试器时,我们发现一个基于背景嵌入的调控器的速度是786美元,而没有牺牲强的性能。我们还展示了配制技术在多个任务和数据集之间起作用。我们分析了预先训练的嵌入与标签连接点的动态之间的相似性和覆盖面。第二,我们利用这些深层理解框架来解释这些技术的开放源。

0
下载
关闭预览

相关内容

命名实体识别(NER)(也称为实体标识,实体组块和实体提取)是信息抽取的子任务,旨在将非结构化文本中提到的命名实体定位和分类为预定义类别,例如人员姓名、地名、机构名、专有名词等。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
4+阅读 · 2019年9月5日
Arxiv
5+阅读 · 2019年8月22日
Arxiv
11+阅读 · 2019年6月19日
VIP会员
相关资讯
【ACL2020放榜!】事件抽取、关系抽取、NER、Few-Shot 相关论文整理
深度学习自然语言处理
18+阅读 · 2020年5月22日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
Github项目推荐 | awesome-bert:BERT相关资源大列表
AI研习社
27+阅读 · 2019年2月26日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
自然语言处理 (NLP)资源大全
机械鸡
35+阅读 · 2017年9月17日
Top
微信扫码咨询专知VIP会员