This paper presents a novel framework that jointly exploits Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) in the context of multi-label remote sensing (RS) image classification. The proposed framework consists of four main modules. The first module aims to extract preliminary local descriptors by considering that RS image bands can be associated with different spatial resolutions. To this end, we introduce a K-Branch CNN in which each branch aims at extracting descriptors of image bands that have the same spatial resolution. The second module aims to model spatial relationship among local descriptors. To this end, we propose a Bidirectional RNN architecture in which Long Short-Term Memory nodes enrich local descriptors by considering spatial relationships of local areas (image patches). The third module aims to define multiple attention scores for local descriptors. To this end, we introduce a novel patch-based multi-attention mechanism that takes into account the joint occurrence of multiple land-cover classes and provides the attention-based local descriptors. The last module aims to employ these descriptors for multi-label RS image classification. Experimental results obtained on our large-scale Sentinel-2 benchmark archive (called as BigEarthNet) show the effectiveness of the proposed framework compared to a state of the art method.


翻译:本文介绍了一个在多标签遥感图像分类背景下共同利用革命神经网络(CNN)和经常神经网络(RNN)的新框架。拟议框架由四个主要模块组成。第一个模块旨在提取初步的当地描述符,考虑RS图像波段可以与不同的空间分辨率相联系。为此,我们引入了一个K-BranchCNN,其中每个分支都旨在提取具有相同空间分辨率的图像波段的描述符。第二个模块旨在模拟地方描述符之间的空间关系。为此,我们提出一个双向 RNN 结构,其中长期短期记忆节点通过考虑当地空间关系(模拟补丁)来丰富当地描述符。第三个模块旨在确定当地描述符的多重关注分数。为此,我们引入了一个新型的基于补丁多保护机制,其中考虑到多个土地覆盖等级的共发情况,并提供基于关注的本地描述符。最后一个模块旨在将这些描述符用于多标签的 RNNE图像分类(长期短期记忆节点)通过考虑当地空间关系(模拟补丁补丁)来丰富当地描述描述符号。第三个模块旨在确定当地描述器的多标签,用以显示我们大规模地球定位基准的图像基准的大规模测试结果。

3
下载
关闭预览

相关内容

图像分类,顾名思义,是一个输入图像,输出对该图像内容分类的描述的问题。它是计算机视觉的核心,实际应用广泛。
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
4+阅读 · 2019年8月7日
Arxiv
12+阅读 · 2019年1月24日
Exploring Visual Relationship for Image Captioning
Arxiv
15+阅读 · 2018年9月19日
Arxiv
21+阅读 · 2018年5月23日
VIP会员
相关VIP内容
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员