Abstractive text summarization is the task of compressing and rewriting a long document into a short summary while maintaining saliency, directed logical entailment, and non-redundancy. In this work, we address these three important aspects of a good summary via a reinforcement learning approach with two novel reward functions: ROUGESal and Entail, on top of a coverage-based baseline. The ROUGESal reward modifies the ROUGE metric by up-weighting the salient phrases/words detected via a keyphrase classifier. The Entail reward gives high (length-normalized) scores to logically-entailed summaries using an entailment classifier. Further, we show superior performance improvement when these rewards are combined with traditional metric (ROUGE) based rewards, via our novel and effective multi-reward approach of optimizing multiple rewards simultaneously in alternate mini-batches. Our method achieves the new state-of-the-art results on CNN/Daily Mail dataset as well as strong improvements in a test-only transfer setup on DUC-2002.
翻译:抽象文本摘要是将长篇文件压缩和重写成简短摘要,同时保持突出性、有针对性逻辑要求和非冗余性的任务。在这项工作中,我们通过强化学习方法处理好摘要的这三个重要方面,有两个新的奖励功能:在基于覆盖的基线之上的ROUGESal和Entail。ROUGESAL 奖励通过增加通过关键词分类器检测到的突出词/词的重量来修改ROUGE衡量标准。Entail 奖励使使用包含分级器的逻辑详细摘要分数高(超常)分数。此外,当这些奖励与基于传统指标(ROUGE)的奖励相结合时,我们展示了优异性业绩改进,我们采用了新颖和有效的多奖项办法,即同时优化替代微型篮子中的多重奖励。我们的方法实现了CNN/Daily邮件数据集的新状态成果,以及在DUC-2002测试式传输设置方面有了强有力的改进。