We propose a novel conditioned text generation model. It draws inspiration from traditional template-based text generation techniques, where the source provides the content (i.e., what to say), and the template influences how to say it. Building on the successful encoder-decoder paradigm, it first encodes the content representation from the given input text; to produce the output, it retrieves exemplar text from the training data as "soft templates," which are then used to construct an exemplar-specific decoder. We evaluate the proposed model on abstractive text summarization and data-to-text generation. Empirical results show that this model achieves strong performance and outperforms comparable baselines.
翻译:我们提出一个新的有条件的文本生成模式。 它从传统基于模板的文本生成技术中得到启发, 即源提供内容( 说些什么), 模板影响如何表达 。 在成功的编码器- 解码器范例的基础上, 它首先从给定输入文本中编码内容表达方式; 为了生成输出, 它从培训数据中提取示例文本作为“ 软模板 ”, 然后用于构建一个实例专用的解码器 。 我们评估了关于抽象文本汇总和数据对文本生成的拟议模式 。 经验性结果显示, 该模式取得了很强的性能, 并超越了可比较的基准 。