Establishing the invariance property of an instrument is a key step for establishing its measurement validity. Measurement invariance is typically assessed by differential item functioning (DIF) analysis, i.e., detecting DIF items whose response distribution depends on not only the latent trait measured by the instrument but also the group membership. DIF analysis is confounded by the group difference in the latent trait distributions. Many DIF analyses require knowing several anchor items that are DIF-free to draw inferences on whether each of the rest is a DIF item, where the anchor items are used to identify the latent trait distributions. When no prior information on anchor items is available, item purification methods and regularized estimation methods can be used. The former iteratively purifies the anchor set by a stepwise model selection procedure, and the latter selects the DIF-free items by a LASSO-type regularization approach. Unfortunately, unlike the methods based on a correctly specified anchor set, these methods are not guaranteed to provide valid statistical inference (e.g., confidence intervals and $p$-values). In this paper, we propose a new method for DIF analysis under a multiple indicators and multiple causes (MIMIC) model for DIF. This method adopts a minimal $L_1$ norm condition for identifying the latent trait distributions. Without requiring prior knowledge about an anchor set, it can accurately estimate the DIF effects of individual items and further draw valid statistical inferences for quantifying the uncertainty. Specifically, the inference results allow us to control the type-I error for DIF detection, which may not be possible with item purification and regularized estimation methods. The proposed method is applied to analyzing the three personality scales of the Eysenck personality questionnaire - revised (EPQ-R).
翻译:建立工具的变量属性是确定工具的测量有效性的关键步骤。测量差异通常通过差异项目功能分析(DIF)评估,即检测反应分布不仅取决于工具所测量的潜在特性而且取决于组成员资格的DIF项目。DIF分析被潜在特性分布的组别差异所混淆。许多DIF分析要求了解几个没有DIF的锁定项目,以推断其余项目是否都是DIF项目,其中使用锚项目来识别潜在特质分布。当没有关于锚项目的先前信息时,可以使用项目净化方法和定期估算方法。前者反复地净化了由工具工具所测量的潜在特性,而后者则通过LASO型的常规特性分布方法选择了无DIF项目。不幸的是,与基于正确指定的锁定系统设置的方法不同,这些方法不能保证提供有效的统计推理(例如,信任间隔和美元价值)。在本文件中,我们提议了一个新的关于锚定项目的透明性信息属性特性特性特性特性特性分析方法,在IMIFIF1中,我们建议了一个关于定期评估结果的精确度分析方法。