Quantile is an important measure in finance and quality assessment in service industry. In this paper, we model the temporal and cross-sectional interactive effect of the quantiles of large-dimensional time series by a latent quantile factor model. The factor loadings and scores are learnt with statistical guarantee via an iterative check-loss-minimization procedure. Without any moment constraint on the idiosyncratic errors, we correctly identify the common and idiosyncratic components for each variable. We obtained the statistical convergence rates of the minimization estimators. Bahardur representations for the estimated factor loadings and scores are provided under some mild conditions. Moreover, a robust method is proposed to select the number of factors consistently. Simulation experiments checked the validity of the theory. Our analysis on a financial data set shows the superiority of learning quantile factors in portfolio allocation over other state-of-the-art methods that learn mean factors.
翻译:量度是服务行业财务和质量评估的一项重要措施。在本文中,我们用一个潜在的量因子模型来模拟大维时间序列四分位数的时间和跨部门互动效应。系数的负荷和分数是通过一个迭代核对-损失最小化程序以统计保证方式学习的。在不对每个变量的特异性差错施加任何限制的情况下,我们正确地确定了每个变量的共同和特异性组成部分。我们获得了最小估量者的统计趋同率。Bahardur对估计系数的负荷和分数的表述是在一些温和的条件下提供的。此外,还提议了一种强有力的方法来统一选择因素的数量。模拟实验检查了理论的有效性。我们对财务数据集的分析表明,在组合分配中学习的量系数优于其他最先进的方法,这些方法可以学习基本因素。</s>