Statistical analysis of multimodal imaging data is a challenging task, since the data involves high-dimensionality, strong spatial correlations and complex data structures. In this paper, we propose rigorous statistical testing procedures for making inferences on the complex dependence of multimodal imaging data. Motivated by the analysis of multi-task fMRI data in the Human Connectome Project (HCP) study, we particularly address three hypothesis testing problems: (a) testing independence among imaging modalities over brain regions, (b) testing independence between brain regions within imaging modalities, and (c) testing independence between brain regions across different modalities. Considering a general form for all the three tests, we develop a global testing procedure and a multiple testing procedure controlling the false discovery rate. We study theoretical properties of the proposed tests and develop a computationally efficient distributed algorithm. The proposed methods and theory are general and relevant for many statistical problems of testing independence structure among the components of high-dimensional random vectors with arbitrary dependence structures. We also illustrate our proposed methods via extensive simulations and analysis of five task fMRI contrast maps in the HCP study.


翻译:对多式联运成像数据进行统计分析是一项艰巨的任务,因为数据涉及高维度、强大的空间相关关系和复杂的数据结构。在本文件中,我们建议采用严格的统计测试程序,对多式联运成像数据的复杂依赖性作出推论。在人类连接项目(HCP)研究中多任务FMRI数据分析的推动下,我们特别处理了三个假设测试问题:(a) 测试成像模式相对于大脑区域的独立性,(b) 在成像模式中测试脑区域的独立性,(c) 测试大脑区域之间在不同模式中的独立性。考虑到所有三种测试的一般形式,我们制定了全球测试程序和多种测试程序,以控制虚假的发现率。我们研究了拟议测试的理论属性,并开发了计算高效分布的算法。提议的方法和理论对于具有任意依赖结构的高维随机载体各组成部分之间测试独立结构的许多统计问题具有一般性和相关性。我们还通过对五种任务FMRI对比图进行广泛模拟和分析来说明我们提出的方法。</s>

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年4月26日
Arxiv
0+阅读 · 2023年4月24日
Arxiv
14+阅读 · 2020年12月17日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员