Statistical analysis of multimodal imaging data is a challenging task, since the data involves high-dimensionality, strong spatial correlations and complex data structures. In this paper, we propose rigorous statistical testing procedures for making inferences on the complex dependence of multimodal imaging data. Motivated by the analysis of multi-task fMRI data in the Human Connectome Project (HCP) study, we particularly address three hypothesis testing problems: (a) testing independence among imaging modalities over brain regions, (b) testing independence between brain regions within imaging modalities, and (c) testing independence between brain regions across different modalities. Considering a general form for all the three tests, we develop a global testing procedure and a multiple testing procedure controlling the false discovery rate. We study theoretical properties of the proposed tests and develop a computationally efficient distributed algorithm. The proposed methods and theory are general and relevant for many statistical problems of testing independence structure among the components of high-dimensional random vectors with arbitrary dependence structures. We also illustrate our proposed methods via extensive simulations and analysis of five task fMRI contrast maps in the HCP study.
翻译:对多式联运成像数据进行统计分析是一项艰巨的任务,因为数据涉及高维度、强大的空间相关关系和复杂的数据结构。在本文件中,我们建议采用严格的统计测试程序,对多式联运成像数据的复杂依赖性作出推论。在人类连接项目(HCP)研究中多任务FMRI数据分析的推动下,我们特别处理了三个假设测试问题:(a) 测试成像模式相对于大脑区域的独立性,(b) 在成像模式中测试脑区域的独立性,(c) 测试大脑区域之间在不同模式中的独立性。考虑到所有三种测试的一般形式,我们制定了全球测试程序和多种测试程序,以控制虚假的发现率。我们研究了拟议测试的理论属性,并开发了计算高效分布的算法。提议的方法和理论对于具有任意依赖结构的高维随机载体各组成部分之间测试独立结构的许多统计问题具有一般性和相关性。我们还通过对五种任务FMRI对比图进行广泛模拟和分析来说明我们提出的方法。</s>