In this paper, we address the numerical solution to the multimarginal optimal transport (MMOT) with pairwise costs. MMOT, as a natural extension from the classical two-marginal optimal transport, has many important applications including image processing, density functional theory and machine learning, but yet lacks efficient and exact numerical methods. The popular entropy-regularized method may suffer numerical instability and blurring issues. Inspired by the back-and-forth method introduced by Jacobs and L\'{e}ger, we investigate MMOT problems with pairwise costs. First, such problems have a graphical representation and we prove equivalent MMOT problems that have a tree representation. Second, we introduce a noval algorithm to solve MMOT on a rooted tree, by gradient based method on the dual formulation. Last, we obtain accurate solutions which can be used for the regularization-free applications.
翻译:本文研究了具有成对代价的多重边际优化运输(MMOT)的数值求解问题,MMOT作为经典二重边际最优传输的自然扩展,在图像处理、密度泛函理论和机器学习等方面具有许多重要应用,但它缺乏高效和准确的数值方法。通常采用的熵正则化方法可能存在数值不稳定性和模糊问题。受Jacobs和Léger引入的前后算法的启发,我们研究了带有对成对代价的MMOT问题。首先,这类问题具有图形表示形式,并且我们证明等效的MMOT问题具有树形表示形式。其次,我们引入了一种新算法来解决有根树上的MMOT问题,并通过对偶形式上的梯度下降方法来求解。最后,我们得出了可以用于无正则化应用程序的准确解。