To address the distribution shifts between training and test data, domain generalization (DG) leverages multiple source domains to learn a model that generalizes well to unseen domains. However, existing DG methods generally suffer from overfitting to the source domains, partly due to the limited coverage of the expected region in feature space. Motivated by this, we propose to perform mixup with data interpolation and extrapolation to cover the potential unseen regions. To prevent the detrimental effects of unconstrained extrapolation, we carefully design a policy to generate the instance weights, named Flatness-aware Gradient-based Mixup (FGMix). The policy employs a gradient-based similarity to assign greater weights to instances that carry more invariant information, and learns the similarity function towards flatter minima for better generalization. On the DomainBed benchmark, we validate the efficacy of various designs of FGMix and demonstrate its superiority over other DG algorithms.
翻译:为解决培训和测试数据之间的分布变化问题,域通用(DG)利用多种来源域来学习一种模型,该模型非常概括到不可见域。然而,现有的DG方法一般都过于适应源域,部分原因是预期区域在地貌空间的覆盖面有限。我们为此提议与数据内插和外推混在一起,以覆盖潜在的不可见区域。为了防止不受限制的外推效应的有害影响,我们仔细设计了一种政策,以生成实例加权,名为Flatness-aware Gradientic Mixup(FGMix)。该政策使用一种基于梯度的相似性,将更大的权重分配给含有更多易变信息的情况,并学习相似性功能,即为更好的普遍性而优美小型。在DomainBed基准上,我们验证了女性生殖器的各种设计的效果,并展示其优于其他D算法。