We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail pertaining to the design of approximation algorithms for problems in network design via the primal-dual method (Combinatorica 15(3):435-454, 1995). Williamson et al.\ prove an approximation guarantee of two for connectivity augmentation problems where the connectivity requirements can be specified by so-called uncrossable functions. They state: ``Extending our algorithm to handle non-uncrossable functions remains a challenging open problem. The key feature of uncrossable functions is that there exists an optimal dual solution which is laminar. This property characterizes uncrossable functions\dots\ A larger open issue is to explore further the power of the primal-dual approach for obtaining approximation algorithms for other combinatorial optimization problems.'' Our main result proves an $O(1)$-approximation guarantee via the primal-dual method for a class of functions that generalizes the notion of an uncrossable function. We mention that the support of every optimal dual solution could be non-laminar for instances that can be handled by our methods. We present two applications of our main result: (1) An $O(1)$-approximation algorithm for augmenting the family of near-minimum cuts of a graph. (2) An $O(1)$-approximation algorithm for the model of $(p,2)$-Flexible Graph Connectivity. Keywords: { Primal-Dual Method, Network Design, $f$-Connectivity Problem, Near-Minimum Cuts, Approximation Algorithms, Flexible Graph Connectivity. }
翻译:我们处理Williamson、Goemans、Vazirani和Mihail提出的长期开放问题,这些问题涉及如何设计对网络设计通过原始-双重方法(Compatorica 15(3):435-454,1995)产生的问题的近似算法(Compatorica 15(3):435-454, 1995)。Williamson 等人 等证明是连接增强问题的两个近似保证,在这些问题上,连接要求可以通过所谓的不可交叉功能来指定。他们说:“运用原始-常规方法处理不可交叉的功能,这仍然是一个挑战性的开放问题。不可交叉功能的关键特征是存在一种最佳双向的双向解决方案,它是一种模拟。这个属性是不可交叉功能的不可交叉函数。这个属性将无法转换的函数的近近近端函数\dotolalal-daldology 获得其他组合优化的近端算算法。“我们的主要结果证明$-直流-直径(lickral) 直径-我们两个直径的直径(al)的直径(al-ral)的直径(alal-ral)的直径解)的直径直径(Oral-ral-ral)的直径),可以用来处理。