Evolutionary algorithms are popular algorithms for multiobjective optimisation (also called Pareto optimisation) as they use a population to store trade-offs between different objectives. Despite their popularity, the theoretical foundation of multiobjective evolutionary optimisation (EMO) is still in its early development. Fundamental questions such as the benefits of the crossover operator are still not fully understood. We provide a theoretical analysis of well-known EMO algorithms GSEMO and NSGA-II to showcase the possible advantages of crossover. We propose a class of problems on which these EMO algorithms using crossover find the Pareto set in expected polynomial time. In sharp contrast, they and many other EMO algorithms without crossover require exponential time to even find a single Pareto-optimal point. This is the first example of an exponential performance gap through the use of crossover for the widely used NSGA-II algorithm.
翻译:进化算法是多目标优化(也称为Pareto优化)的流行算法,因为它们使用人口来储存不同目标之间的权衡。尽管它们很受欢迎,但多目标进化优化(EMO)的理论基础仍处于早期发展阶段。诸如交叉操作员的好处等基本问题仍然没有得到完全理解。我们对众所周知的 EMO GSEMO 和 NSGA-II 进行理论分析,以展示交叉转换的可能好处。我们建议使用交叉转换的EMO 算法在预期的多元时段中找到帕雷托设置的一组问题。在鲜明的对比中,它们和许多其他没有交叉的 EMO 算法需要指数时间甚至找到一个单一的Pareto-最佳点。这是通过对广泛使用的 NSGA-II 算法的交叉使用指数性表现差距的第一个例子。