We consider Group Control by Adding Individuals (GCAI) in the setting of group identification for two procedural rules -- the consensus-start-respecting rule and the liberal-start-respecting rule. It is known that GCAI for both rules are NP-hard, but whether they are fixed-parameter tractable with respect to the number of distinguished individuals remained open. We resolve both open problems in the affirmative. In addition, we strengthen the NP-hardness of GCAI by showing that, with respect to the natural parameter the number of added individuals, GCAI for both rules are W[2]-hard. Notably, the W[2]-hardness for the liberal-start-respecting rule holds even when restricted to a very special case where the qualifications of individuals satisfy the so-called consecutive ones property. However, for the consensus-start-respecting rule, the problem becomes polynomial-time solvable in this special case. We also study a dual restriction where the disqualifications of individuals fulfill the consecutive ones property, and show that under this restriction GCAI for both rules turn out to be polynomial-time solvable. Our reductions for showing W[2]-hardness also imply several lower bounds concerning kernelization and exact algorithms.


翻译:我们认为,在为两项程序规则 -- -- 协商一致的起动尊重规则和自由的起动尊重规则 -- -- 确定群体身份时,以个人为对象进行群体控制(GCAI)是两种程序规则 -- -- 协商一致的起动尊重规则和自由的起动尊重规则 -- -- 众所周知,对于这两项规则来说,GCAI都是硬硬的,但对于被区别的个人数目而言,它们是否是固定的参数可移动的;我们以肯定的方式解决了这两个尚未解决的问题;此外,我们通过表明在自然参数方面,增加的个人数目是W[2]硬的,加强GCAI的硬性,这两类规则都是W[2]硬性。值得注意的是,自由的起动尊重规则即使限于一个非常特殊的情况,即个人的资格满足了所谓的连续财产的特性,但两者是否都是固定的;然而,就协商一致的起动规则而言,问题就在这个特殊案例中,是多时制的。我们还研究了一种双重限制,即个人不符合连续财产的取消资格,并且根据这项限制,GCAI在这两种规则下都具有多元性-时间的软性硬性,也意味着软性地表明软性地压。

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
Arxiv
0+阅读 · 2023年3月17日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年8月18日
Top
微信扫码咨询专知VIP会员