Relative survival represents the preferred framework for the analysis of population cancer survival data. The aim is to model the survival probability associated to cancer in the absence of information about the cause of death. Recent data linkage developments have allowed for incorporating the place of residence or the place where patients receive treatment into the population cancer data bases; however, modeling this spatial information has received little attention in the relative survival setting. We propose a flexible parametric class of spatial excess hazard models (along with inference tools), named ``Relative Survival Spatial General Hazard'' (RS-SGH), that allows for the inclusion of fixed and spatial effects in both time-level and hazard-level components. We illustrate the performance of the proposed model using an extensive simulation study, and provide guidelines about the interplay of sample size, censoring, and model misspecification. We present two case studies, using real data from colon cancer patients in England, aiming at answering epidemiological questions that require the use of a spatial model. These case studies illustrate how a spatial model can be used to identify geographical areas with low cancer survival, as well as how to summarize such a model through marginal survival quantities and spatial effects.
翻译:相对生存是分析人口癌症生存数据的首选框架,目的是在缺乏死亡原因信息的情况下模拟与癌症有关的存活概率。最近的数据联系发展使得能够将居住地或病人接受治疗的地点纳入人口癌症数据库;然而,这种空间信息的建模在相对生存环境方面很少受到重视。我们提出了一个灵活的空间超常危害模型参数类别(连同推断工具),名为“相对生存空间一般危险”,允许将固定和空间影响纳入时间和危险程度两个组成部分。我们用广泛的模拟研究来说明拟议模型的性能,并就样本大小、检查和模型区分的相互作用提供指导。我们提出两个案例研究,利用英国结肠癌病人的实际数据,旨在回答需要使用空间模型的流行病学问题。这些案例研究说明如何使用空间模型来确定癌症低存活率地理区域,以及如何通过边际生存数量和空间影响来概括这种模型。