Continuous Blood Glucose (CGM) monitors have revolutionized the ability of diabetics to manage their blood glucose, and paved the way for artificial pancreas systems. In this paper we augment CGM data with sensor input collected by a smart phone and use it to provide analytical tools for patients and clinicians. We collected GPS data, activity classifications, and blood glucose data with a custom iOS application over a 9 month period from a single free-living type-1 diabetic patient. This data set is novel in terms of it's size, the inclusion of GPS data, and the fact that it was collected non-intrusively from a free-living patient. We describe a method to measure the occurrence of lifestyle \textit{events} based on GPS and activity data, and show that they can capture instances of food consumption and are therefore correlated to changes in blood glucose. Finally, we incorporate these event representations into our system to create useful visualizations and notifications to aid patients in managing their diabetes.
翻译:连续血液甘蔗糖(CGM)监测器使糖尿病人管理血液甘蔗糖的能力发生革命,并为人工胰腺系统铺平了道路。在本文中,我们用智能电话收集的传感器输入来增加CGM数据,并用它为病人和临床医生提供分析工具。我们收集了全球定位系统数据、活动分类和血液甘蔗糖数据,并用一个自定的iOS应用软件,为期9个月,从一个1型免费生活型糖尿病病人那里收集了这些数据。这个数据集在规模、是否包括GPS数据以及是否从一个自由生活的病人那里非侵入性地收集了这些数据这一事实方面都是新颖的。我们描述了一种根据GPS和活动数据测量生活方式\ textit{events}发生频率的方法,并表明它们能够捕捉食物消费的事例,因此与血液甘蔗的变化有关。最后,我们将这些事件表象纳入我们的系统,以创造有用的可视化和通知,帮助病人管理糖尿病。