Optimal control (OC) using inverse dynamics provides numerical benefits such as coarse optimization, cheaper computation of derivatives, and a high convergence rate. However, to take advantage of these benefits in model predictive control (MPC) for legged robots, it is crucial to handle efficiently its large number of equality constraints. To accomplish this, we first (i) propose a novel approach to handle equality constraints based on nullspace parametrization. Our approach balances optimality, and both dynamics and equality-constraint feasibility appropriately, which increases the basin of attraction to high-quality local minima. To do so, we (ii) modify our feasibility-driven search by incorporating a merit function. Furthermore, we introduce (iii) a condensed formulation of inverse dynamics that considers arbitrary actuator models. We also propose (iv) a novel MPC based on inverse dynamics within a perceptive locomotion framework. Finally, we present (v) a theoretical comparison of optimal control with forward and inverse dynamics and evaluate both numerically. Our approach enables the first application of inverse-dynamics MPC on hardware, resulting in state-of-the-art dynamic climbing on the ANYmal robot. We benchmark it over a wide range of robotics problems and generate agile and complex maneuvers. We show the computational reduction of our nullspace resolution and condensed formulation (up to 47.3%). We provide evidence of the benefits of our approach by solving coarse optimization problems with a high convergence rate (up to 10 Hz of discretization). Our algorithm is publicly available inside CROCODDYL.
翻译:通过零空间分解的反向动力学模型预测控制
通过反向动力学提供的最优控制方法具有粗略优化、便宜的导数计算和高收敛速度等数字优势。对于四足机器人的模型预测控制 (MPC) 来说,处理大量的等式约束至关重要以充分利用这些优势。为此,我们首先提出了一种基于零空间分解处理等式约束的新方法。我们的方法适当平衡了最优性、动力学和等式约束的可行性,从而增加了高质量局部极小值的吸引盆地。为此,我们通过引入一个价值函数来修改我们的可行性驱动搜索。此外,我们还引入了一种考虑任意执行器模型的反向动力学计算的简化公式。在感知运动框架内提出了一种基于反向动力学的 MPC,并进行了理论比较。通过硬件实验,我们证明了我们的方法是首个应用反向动力学 MPC 的方法,并且取得了 ANYmal 机器人的最新动态攀爬成果,以及普遍的机器人问题求解和繁琐的机动操作。我们的方法有助于削减计算复杂度(高达 47.3% 的复杂度削减)并且具有高收敛速度(高达 10 Hz 的离散化)。我们在公开的 CROCODDYL 内提供了该算法的实现。