In this paper, we present a Neural Preset technique to address the limitations of existing color style transfer methods, including visual artifacts, vast memory requirement, and slow style switching speed. Our method is based on two core designs. First, we propose Deterministic Neural Color Mapping (DNCM) to consistently operate on each pixel via an image-adaptive color mapping matrix, avoiding artifacts and supporting high-resolution inputs with a small memory footprint. Second, we develop a two-stage pipeline by dividing the task into color normalization and stylization, which allows efficient style switching by extracting color styles as presets and reusing them on normalized input images. Due to the unavailability of pairwise datasets, we describe how to train Neural Preset via a self-supervised strategy. Various advantages of Neural Preset over existing methods are demonstrated through comprehensive evaluations. Notably, Neural Preset enables stable 4K color style transfer in real-time without artifacts. Besides, we show that our trained model can naturally support multiple applications without fine-tuning, including low-light image enhancement, underwater image correction, image dehazing, and image harmonization. Project page with demos: https://zhkkke.github.io/NeuralPreset .


翻译:在本文中,我们提出了一种神经预设技术,以解决现有色彩风格迁移方法的局限性,包括视觉伪影,大内存需求,和较慢的风格切换速度。我们的方法基于两个核心设计。首先,我们提出确定性神经色彩映射(DNCM),通过图像自适应的色彩映射矩阵每个像素进行一致的处理,避免伪影,并支持具有小内存占用量的高分辨率输入。其次,我们通过将任务分成颜色规范化和样式化两个阶段,开发了一种二阶段管道,允许通过提取颜色样式作为预设并在规范化的输入图像上重用它们来实现高效的风格切换。由于不存在成对数据集,我们描述了如何通过自监督学习策略训练神经预设。通过全面的评估来展示了神经预设相对于现有方法的各种优势。值得注意的是,神经预设可以在实时环境下稳定地进行4K色彩风格迁移,而且不会出现伪影。此外,我们展示了我们训练的模型可以在不进行微调的情况下自然地支持多种应用,包括低光图像增强,水下图像修正,图像去雾以及图像协调。项目页面及演示:https://zhkkke.github.io/NeuralPreset。

0
下载
关闭预览

相关内容

【2022新书】强化学习工业应用,408页pdf
专知会员服务
229+阅读 · 2022年2月3日
【芝加哥大学】可变形的风格转移,Deformable Style Transfer
专知会员服务
31+阅读 · 2020年3月26日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Pytorch多模态框架MMF
专知
49+阅读 · 2020年6月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Arxiv
14+阅读 · 2021年7月20日
Deformable Style Transfer
Arxiv
14+阅读 · 2020年3月24日
UNITER: Learning UNiversal Image-TExt Representations
Arxiv
23+阅读 · 2019年9月25日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员