This paper focuses on representation learning for dynamic graphs with temporal interactions. A fundamental issue is that both the graph structure and the nodes own their own dynamics, and their blending induces intractable complexity in the temporal evolution over graphs. Drawing inspiration from the recent process of physical dynamic models in deep neural networks, we propose Graph Neural Controlled Differential Equation (GN-CDE) model, a generic differential model for dynamic graphs that characterise the continuously dynamic evolution of node embedding trajectories with a neural network parameterised vector field and the derivatives of interactions w.r.t. time. Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without integration by segments, the capability to calibrate trajectories with subsequent data, and robustness to missing observations. Empirical evaluation on a range of dynamic graph representation learning tasks demonstrates the superiority of our proposed approach compared to the baselines.
翻译:本文侧重于具有时间互动性的动态图形的演示学习。 一个基本问题是,图形结构和节点本身具有动态,它们的混合在图形的时空演变中引起难以解决的复杂性。 我们从深神经网络中最近物理动态模型过程的灵感中,提出了“神经控制差异计算”模型(GN-CDE)模型,这是一个通用的动态图形差异模型,该模型将神经网络参数化矢量场的节点嵌轨迹的持续动态演变和互动的衍生物(w.r.t.时间)定性为特征。 我们的框架展示了几个可取的特征,包括能够表达演变中的图表的动态,而没有按部分进行整合,能够校准随后的数据,以及能够对缺失的观测进行稳健性。 对一系列动态图形学习任务进行的经验性评估表明,与基线相比,我们拟议的方法具有优越性。