We study a general class of entropy-regularized multi-variate LQG mean field games (MFGs) in continuous time with $K$ distinct sub-population of agents. We extend the notion of actions to action distributions (exploratory actions), and explicitly derive the optimal action distributions for individual agents in the limiting MFG. We demonstrate that the optimal set of action distributions yields an $\epsilon$-Nash equilibrium for the finite-population entropy-regularized MFG. Furthermore, we compare the resulting solutions with those of classical LQG MFGs and establish the equivalence of their existence.
翻译:我们持续地研究一种普通的、以美元为单位的、以不同的代理子人口构成为单位的、正统的、多变式LQG(MFG)代表场游戏(MFG),我们把行动的概念扩大到行动分布(探索行动),并在限制的MFG中明确地为单个代理商获得最佳的行动分布。我们证明,最优的行动分布组为有限人口成份的、正态的MFG(MFG)提供了美元-纳什的平衡。 此外,我们比较了由此产生的解决方案与传统的LQG MFG(MG)的解决方案,并确定了其存在的等值。