We show that any (real) generalized stochastic process over $\mathbb{R}^{d}$ can be expressed as a linear transformation of a White Noise process over $\mathbb{R}^{d}$. The procedure is done by using the regularity theorem for tempered distributions to obtain a mean-square continuous stochastic process which is then expressed in a Karhunen-Lo\`eve expansion with respect to a convenient Hilbert space. This result also allows to conclude that any generalized stochastic process can be expressed as a series expansion of deterministic tempered distributions weighted by uncorrelated random variables with square-summable variances. A result specifying when a generalized stochastic process can be linearly transformed into a White Noise is also presented.
翻译:我们显示,超过$mathbb{R ⁇ d}美元的任何(真实的)普遍随机过程都可以表现为白噪音过程的线性转换,超过$\mathbb{R ⁇ d}美元。该程序是通过使用温和分布的常规性理论来完成的,以获得一种平均的连续随机过程,然后以Karhunen-Lo ⁇ eeve的扩展方式表达,以方便的Hilbert空间为单位。这一结果还允许得出以下结论,即任何普遍碎裂过程可以表现为由非cor相关随机变量加权的确定性调节分布的系列扩展,并带有可平数差异。还介绍了一个结果,说明一般随机过程何时可以线性地转换成白噪音。