The recent growth in multi-fidelity uncertainty quantification has given rise to a large set of variance reduction techniques that leverage information from model ensembles to provide variance reduction for estimates of the statistics of a high-fidelity model. In this paper we provide two contributions: (1) we utilize an ensemble estimator to account for uncertainties in the optimal weights of approximate control variate (ACV) approaches and derive lower bounds on the number of samples required to guarantee variance reduction; and (2) we extend an existing multi-fidelity importance sampling (MFIS) scheme to leverage control variates. As such we make significant progress towards both increasing the practicality of approximate control variates$-$for instance, by accounting for the effect of pilot samples$-$and using multi-fidelity approaches more effectively for estimating low-probability events. The numerical results indicate our hybrid MFIS-ACV estimator achieves up to 50% improvement in variance reduction over the existing state-of-the-art MFIS estimator, which had already shown outstanding convergence rate compared to the Monte Carlo method, on several problems of computational mechanics.
翻译:近期多纤维性不确定性量化的增长产生了大量减少差异的技术,利用模型组合中的信息减少差异,对高纤维性模型统计的估计数作出差异估计。在本文件中,我们提供了两项贡献:(1) 我们使用混合估算器,以计算近似控制变差(ACV)方法的最佳加权数的不确定性,并对保证减少差异所需的样本数量得出较低的限制;(2) 我们扩大现有的多纤维性重要性抽样(MFIS)计划,以利用差异控制。因此,我们在提高大约控制变差($-美元)的实用性方面取得了重大进展,例如,通过计算试点样品($-美元)的影响,以及更有效地使用多纤维性方法估算低概率事件。数字结果显示,我们的混合MFIS-ACV估计器在计算若干问题方面,与MFIS(MFIS)估算器相比,已经显示与蒙特卡洛方法相比,在减少差异方面出现了未达到50%的趋同率。