Contrastive methods have led a recent surge in the performance of self-supervised representation learning (SSL). Recent methods like BYOL or SimSiam purportedly distill these contrastive methods down to their essence, removing bells and whistles, including the negative examples, that do not contribute to downstream performance. These "non-contrastive" methods work surprisingly well without using negatives even though the global minimum lies at trivial collapse. We empirically analyze these non-contrastive methods and find that SimSiam is extraordinarily sensitive to dataset and model size. In particular, SimSiam representations undergo partial dimensional collapse if the model is too small relative to the dataset size. We propose a metric to measure the degree of this collapse and show that it can be used to forecast the downstream task performance without any fine-tuning or labels. We further analyze architectural design choices and their effect on the downstream performance. Finally, we demonstrate that shifting to a continual learning setting acts as a regularizer and prevents collapse, and a hybrid between continual and multi-epoch training can improve linear probe accuracy by as many as 18 percentage points using ResNet-18 on ImageNet.


翻译:最近的一些方法,例如 BYOL 或 SimSiam 将这些反比方法提炼到其精髓,去除钟声和哨声,包括负面例子,这些方法对下游的性能没有帮助。这些“非竞争性”方法在使用负效果的情况下效果极好,尽管全球最低要求处于微不足道的崩溃状态。我们从经验上分析这些非竞争性方法,发现SimSiam对数据集和模型大小特别敏感。特别是,如果模型与数据集大小相比太小,SimSiam 表示会发生局部的尺寸崩溃。我们提出了衡量这种崩溃程度的尺度,并表明可以用来在没有微调或标签的情况下预测下游任务性能。我们进一步分析建筑设计选择及其对下游性能的影响。最后,我们证明,转向持续学习的设置,作为常规,防止崩溃,以及连续和多角度训练之间的混合,可以提高线性探测的准确度,因为许多人使用ResNet 18 图像网络 的18 个百分点。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
28+阅读 · 2022年3月28日
Arxiv
13+阅读 · 2021年7月20日
Arxiv
10+阅读 · 2021年2月26日
Arxiv
13+阅读 · 2020年4月12日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员