This paper presents a pipeline integrating fine-tuned large language models (LLMs) with named entity recognition (NER) for efficient domain-specific text summarization and tagging. The authors address the challenge posed by rapidly evolving sub-cultural languages and slang, which complicate automated information extraction and law enforcement monitoring. By leveraging the LLaMA Factory framework, the study fine-tunes LLMs on both generalpurpose and custom domain-specific datasets, particularly in the political and security domains. The models are evaluated using BLEU and ROUGE metrics, demonstrating that instruction fine-tuning significantly enhances summarization and tagging accuracy, especially for specialized corpora. Notably, the LLaMA3-8B-Instruct model, despite its initial limitations in Chinese comprehension, outperforms its Chinese-trained counterpart after domainspecific fine-tuning, suggesting that underlying reasoning capabilities can transfer across languages. The pipeline enables concise summaries and structured entity tagging, facilitating rapid document categorization and distribution. This approach proves scalable and adaptable for real-time applications, supporting efficient information management and the ongoing need to capture emerging language trends. The integration of LLMs and NER offers a robust solution for transforming unstructured text into actionable insights, crucial for modern knowledge management and security operations.


翻译:本文提出了一种将微调后的大语言模型(LLMs)与命名实体识别(NER)相结合的流程,以实现高效的领域特定文本摘要生成与标注。作者针对快速演变的亚文化语言和俚语所带来的挑战进行了探讨,这些语言现象使得自动化信息提取和执法监控变得复杂。研究利用LLaMA Factory框架,在通用数据集及定制化的领域特定数据集(尤其是政治与安全领域)上对LLMs进行了微调。模型通过BLEU和ROUGE指标进行评估,结果表明指令微调显著提升了摘要生成和标注的准确性,特别是在专业语料上。值得注意的是,LLaMA3-8B-Instruct模型尽管在中文理解方面存在初始局限,但在领域特定微调后表现优于其中文训练版本,这表明底层的推理能力可以跨语言迁移。该流程能够生成简洁的摘要并进行结构化的实体标注,从而促进文档的快速分类与分发。该方法被证明具有可扩展性和适应性,适用于实时应用,支持高效的信息管理,并能满足捕捉新兴语言趋势的持续需求。LLMs与NER的集成为将非结构化文本转化为可操作的洞察提供了稳健的解决方案,这对于现代知识管理和安全运营至关重要。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Arxiv
13+阅读 · 2019年2月28日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员