Deep learning-based human activity recognition (HAR) methods have shown great promise in the applications of smart healthcare systems and wireless body sensor network (BSN). Despite their demonstrated performance in laboratory settings, the real-world implementation of such methods is still hindered by the cross-subject issue when adapting to new users. To solve this issue, we propose ActiveSelfHAR, a framework that combines active learning's benefit of sparsely acquiring data with actual labels and self- training's benefit of effectively utilizing unlabeled data to enable the deep model to adapt to the target domain, i.e., the new users. In this framework, the model trained in the last iteration or the source domain is first utilized to generate pseudo labels of the target-domain samples and construct a self-training set based on the confidence score. Second, we propose to use the spatio-temporal relationships among the samples in the non-self-training set to augment the core set selected by active learning. Finally, we combine the self-training set and the augmented core set to fine-tune the model. We demonstrate our method by comparing it with state-of-the-art methods on two IMU-based datasets and an EMG-based dataset. Our method presents similar HAR accuracies with the upper bound, i.e. fully supervised fine-tuning with less than 1\% labeled data of the target dataset and significantly improves data efficiency and time cost. Our work highlights the potential of implementing user-independent HAR methods into smart healthcare systems and BSN.


翻译:基于深度学习的人体活动识别(HAR)方法在智能医疗系统和无线体传感器网络(BSN)应用中表现出极大的潜力。尽管在实验室环境中表现不俗,但实现这种方法的真实世界的应用,仍受到适应新用户时的跨受试者问题的影响。为了解决这个问题,我们提出了ActiveSelfHAR框架,它将稀疏获取具有实际标签的数据的主动学习优点与有效利用无标签数据的自训练优点相结合,从而使深度模型能够适应目标领域,即新用户。在这个框架中,先利用上一个迭代或源域中训练的模型对目标域样本生成伪标签,并基于置信度评分构建自训练集。其次,我们提出利用非自训练集中样本的空间-时间关系来增强主动学习选择的核心集。最后,我们将自训练集和增强的核心集组合起来对模型进行微调。我们通过在两个IMU数据集和一个EMG数据集上与最先进的方法进行比较来展示我们的方法。我们的方法具有与上限中的完全监督微调类似的HAR准确性,即在目标数据集少于1%标记数据的情况下,并显著提高了数据效率和时间成本。我们的工作强调了将用户无关的HAR方法实施到智能医疗系统和BSN中的潜力。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
VIP会员
相关VIP内容
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
笔记 | Deep active learning for named entity recognition
黑龙江大学自然语言处理实验室
24+阅读 · 2018年5月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员