We present a multigrid approach that combats the quadratic growth of the number of parameters with respect to the number of channels in standard convolutional neural networks (CNNs). It has been shown that there is a redundancy in standard CNNs, as networks with much sparser convolution operators can yield similar performance to full networks. The sparsity patterns that lead to such behavior, however, are typically random, hampering hardware efficiency. In this work, we present a multigrid-in-channels approach for building CNN architectures that achieves full coupling of the channels, and whose number of parameters is linearly proportional to the width of the network. To this end, we replace each convolution layer in a generic CNN with a multilevel layer consisting of structured (i.e., grouped) convolutions. Our examples from supervised image classification show that applying this strategy to residual networks and MobileNetV2 considerably reduces the number of parameters without negatively affecting accuracy. Therefore, we can widen networks without dramatically increasing the number of parameters or operations.
翻译:我们提出了一个多格办法,以对抗标准进化神经网络(CNNs)中频道数量方面参数数的二次增长。 已经证明标准CNN系统存在冗余, 因为与非常稀疏的进化运营商的网络可以产生与完整网络相似的性能。 然而,导致这种行为的聚变模式通常是随机的,妨碍硬件效率。 在这项工作中,我们提出了一个多格网-内通道办法,用于建设CNN结构,这种结构能够实现频道的全面连接,其参数数与网络宽度成直线成比例。 为此,我们用一个由结构化(即分组的)进化组成的多层次CNN系统取代了普通CNN系统中的每个进化层。 我们从监督图像分类中得出的例证表明,将这一战略应用于残余网络和移动网络2 大大降低了精确度。 因此,我们可以在不大幅增加参数或操作数量的情况下扩大网络。