In this paper, we propose a method of improving Convolutional Neural Networks (CNN) by determining the optimal alignment of weights and inputs using dynamic programming. Conventional CNNs convolve learnable shared weights, or filters, across the input data. The filters use a linear matching of weights to inputs using an inner product between the filter and a window of the input. However, it is possible that there exists a more optimal alignment of weights. Thus, we propose the use of Dynamic Time Warping (DTW) to dynamically align the weights to optimized input elements. This dynamic alignment is useful for time series recognition due to the complexities of temporal relations and temporal distortions. We demonstrate the effectiveness of the proposed architecture on the Unipen online handwritten digit and character datasets, the UCI Spoken Arabic Digit dataset, and the UCI Activities of Daily Life dataset.
翻译:在本文中,我们提出了一个改进进化神经网络的方法,方法是利用动态编程确定权重和投入的最佳对齐。常规CNN在输入数据之间混合了可学习的共享权重或过滤器。过滤器使用在过滤器和输入窗口之间使用内部产品对输入权重的线性对齐。然而,可能存在更优化的权重对齐。因此,我们提议使用动态时间扭曲(DTW)来动态地将权重与优化输入要素对齐。这种动态对齐对于时间序列的识别有用,因为时间关系和时间扭曲的复杂性。我们展示了Unipen在线手写数字和字符数据集、UCI Spoken Arabrian Digit数据集和UCI Daily数据集的拟议结构的有效性。