We introduce the information geometry module of the Python package Geomstats. The module first implements Fisher-Rao Riemannian manifolds of widely used parametric families of probability distributions, such as normal, gamma, beta, Dirichlet distributions, and more. The module further gives the Fisher-Rao Riemannian geometry of any parametric family of distributions of interest, given a parameterized probability density function as input. The implemented Riemannian geometry tools allow users to compare, average, interpolate between distributions inside a given family. Importantly, such capabilities open the door to statistics and machine learning on probability distributions. We present the object-oriented implementation of the module along with illustrative examples and show how it can be used to perform learning on manifolds of parametric probability distributions.
翻译:我们引入了 Python 软件包 Geomstats 的信息几何模块。 该模块首先安装了频谱分布广泛使用的参数序列的Fisher- Rao Riemannian 参数序列, 如正常、 伽马、 贝塔、 dirichlet 分布等。 该模块进一步提供了Fisher- Rao Riemannian 参数序列中任何相关分布分布的参数序列的几何, 给出了一个参数化概率密度功能作为输入。 实施的Riemann 几何工具允许用户比较、 平均、 相互调试某个家庭内部分布。 重要的是, 这种能力打开了统计数据和机器对概率分布的学习的大门。 我们展示了该模块的面向对象的实施情况以及示例, 并展示了该模块如何用于在参数概率分布的多个方面进行学习 。