In this paper, I try to tame "Basu's elephants" (data with extreme selection on observables). I propose new practical large-sample and finite-sample methods for estimating and inferring heterogeneous causal effects (under unconfoundedness) in the empirically relevant context of limited overlap. I develop a general principle called "Stable Probability Weighting" (SPW) that can be used as an alternative to the widely used Inverse Probability Weighting (IPW) technique, which relies on strong overlap. I show that IPW (or its augmented version), when valid, is a special case of the more general SPW (or its doubly robust version), which adjusts for the extremeness of the conditional probabilities of the treatment states. The SPW principle can be implemented using several existing large-sample parametric, semiparametric, and nonparametric procedures for conditional moment models. In addition, I provide new finite-sample results that apply when unconfoundedness is plausible within fine strata. Since IPW estimation relies on the problematic reciprocal of the estimated propensity score, I develop a "Finite-Sample Stable Probability Weighting" (FPW) set-estimator that is unbiased in a sense. I also propose new finite-sample inference methods for testing a general class of weak null hypotheses. The associated computationally convenient methods, which can be used to construct valid confidence sets and to bound the finite-sample confidence distribution, are of independent interest. My large-sample and finite-sample frameworks extend to the setting of multivalued treatments.


翻译:在本文中, 我试图将“ 巴素的大象” (数据在可观察性上选择得极为精确的数据) 驯服。 我提议在有限重叠的经验相关背景中, 采用新的实用的大型和有限抽样方法来估计和推断各种因果效应( 缺乏根据) 。 我提出了一个一般原则, 称为“ 稳定概率比重”( SPW), 它可以用来替代广泛使用的概率比重( IPW) 技术, 这种方法依赖很强的重叠。 我表明, IPW( 或其扩大版) 如果有效, 是比较普遍的 SPW( 或它的双重强度版本) 的特例, 用来调整治疗状态的有条件概率的极端性。 SPW 原则可以用一些现有的大型抽样比重、 半参数和非参数程序来实施 有条件时刻模型模型模型。 此外, 我提供了新的有限比值结果, 当不可靠时, 可以在精细的层内应用。 由于 IPW 估算取决于估算的易对等值的准确性, 也使用了高估定值的准确性货币的精确度的精确度 。

0
下载
关闭预览

相关内容

不可错过!700+ppt《因果推理》课程!杜克大学Fan Li教程
专知会员服务
69+阅读 · 2022年7月11日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月10日
Arxiv
0+阅读 · 2023年3月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员