In this paper, a practical estimation method for a regression model is proposed using semiparametric efficient score functions applicable to data with various shapes of errors. First, I derive semiparametric efficient score vectors for a homoscedastic regression model without any assumptions of errors. Next, the semiparametric efficient score function can be modified assuming a certain parametric distribution of errors according to the shape of the error distribution or by estimating the error distribution non-parametrically. Nonparametric methods for errors can be used to estimate the parameters of interest or to find an appropriate parametric error distribution. In this regard, the proposed estimation methods utilize both parametric and nonparametric methods for errors appropriately. Through numerical studies, the performance of the proposed estimation methods is demonstrated.
翻译:在本文中,提议对回归模型采用实用的估计方法,采用适用于各种差错形态的数据的半对数有效分数函数。首先,我为同质偏差回归模型得出半对数有效分数矢量,不作任何误差假设。接下来,半对数有效分数函数可以修改,假设根据差错分布形状对差错进行某种参数分布,或者通过非对数分布估算,则假设误差分布的偏差的偏差分布,则假设对半对数有效分数函数进行某种参数分布。对误差的非对数方法可以用来估计利差参数或找到适当的准差差分分布。在这方面,拟议的估计方法对差错适当使用准数和非对数方法。通过数字研究,展示了拟议估算方法的绩效。