This paper presents the convergence analysis of the spatial finite difference method (FDM) for the stochastic Cahn--Hilliard equation with Lipschitz nonlinearity and multiplicative noise. Based on fine estimates of the discrete Green function, we prove that both the spatial semi-discrete numerical solution and its Malliavin derivative have strong convergence order $1$. Further, by showing the negative moment estimates of the exact solution, we obtain that the density of the spatial semi-discrete numerical solution converges in $L^1(\mathbb R)$ to the exact one. Finally, we apply an exponential Euler method to discretize the spatial semi-discrete numerical solution in time and show that the temporal strong convergence order is nearly $\frac38$, where a difficulty we overcome is to derive the optimal H\"older continuity of the spatial semi-discrete numerical solution.
翻译:本文展示了与利普西茨非线性和多复制性噪声等分法的空间限制差异法(FDM)的趋同分析。 根据对离散绿色函数的细微估计,我们证明空间半分解数字解决方案及其马利亚温衍生物都有强烈的趋同顺序$。此外,通过显示对确切解决方案的负点估计,我们了解到空间半分解数字解决方案的密度以$L1 (\mathbbb R) 和 $1 相融合。最后,我们采用了指数极速电解法将空间半分解数字解决方案在时间上分解,并表明时间强烈趋同顺序接近$frac38$,我们克服的一个困难是获得空间半分解数字解决方案的最佳 H\ older 连续性 。