We investigate the expressive power of depth-2 bandlimited random neural networks. A random net is a neural network where the hidden layer parameters are frozen with random assignment, and only the output layer parameters are trained by loss minimization. Using random weights for a hidden layer is an effective method to avoid non-convex optimization in standard gradient descent learning. It has also been adopted in recent deep learning theories. Despite the well-known fact that a neural network is a universal approximator, in this study, we mathematically show that when hidden parameters are distributed in a bounded domain, the network may not achieve zero approximation error. In particular, we derive a new nontrivial approximation error lower bound. The proof utilizes the technique of ridgelet analysis, a harmonic analysis method designed for neural networks. This method is inspired by fundamental principles in classical signal processing, specifically the idea that signals with limited bandwidth may not always be able to perfectly recreate the original signal. We corroborate our theoretical results with various simulation studies, and generally, two main take-home messages are offered: (i) Not any distribution for selecting random weights is feasible to build a universal approximator; (ii) A suitable assignment of random weights exists but to some degree is associated with the complexity of the target function.
翻译:我们调查了深层-2带带限制随机神经网络的表达力。 随机网是一个神经网络, 隐藏的层参数被随机地冻结, 只有输出层参数通过损失最小化来训练。 对隐藏层使用随机权重是一种有效方法, 避免标准梯度下降学习中非电解色优化。 在最近的深层学习理论中也采用了这种方法。 尽管众所周知, 神经网络是一个通用的辅助器, 但在本研究中, 我们数学地显示, 当隐藏参数分布在一个封闭的域中时, 网络可能不会达到零近似误差。 特别是, 我们得出一个新的非三角近似误差。 校对一个隐藏层使用随机权重分析技术, 这是一种为神经网络设计的协调分析方法。 这种方法受经典信号处理的基本原则启发, 特别是带带有限带宽的信号不一定能够完美地重建原始信号。 我们用各种模拟研究证实了我们的理论结果, 一般来说, 提供两种主取信息:(i) 任何随机权重分配都是可行的, 与随机权重相关功能存在。