This paper presents a new methodology to alleviate the fundamental trade-off between accuracy and latency in spiking neural networks (SNNs). The approach involves decoding confidence information over time from the SNN outputs and using it to develop a decision-making agent that can dynamically determine when to terminate each inference. The proposed method, Dynamic Confidence, provides several significant benefits to SNNs. 1. It can effectively optimize latency dynamically at runtime, setting it apart from many existing low-latency SNN algorithms. Our experiments on CIFAR-10 and ImageNet datasets have demonstrated an average 40% speedup across eight different settings after applying Dynamic Confidence. 2. The decision-making agent in Dynamic Confidence is straightforward to construct and highly robust in parameter space, making it extremely easy to implement. 3. The proposed method enables visualizing the potential of any given SNN, which sets a target for current SNNs to approach. For instance, if an SNN can terminate at the most appropriate time point for each input sample, a ResNet-50 SNN can achieve an accuracy as high as 82.47% on ImageNet within just 4.71 time steps on average. Unlocking the potential of SNNs needs a highly-reliable decision-making agent to be constructed and fed with a high-quality estimation of ground truth. In this regard, Dynamic Confidence represents a meaningful step toward realizing the potential of SNNs.
翻译:本文提出了一种新方法,通过动态置信度从 SNN 输出中解码置信信息并使用其开发决策制定代理,从而缓解了 SNN 中准确性和延迟之间的根本权衡。所提出的方法“动态置信度”为 SNN 提供了几个重要的优势:1.它可以在运行时动态有效优化延迟,与许多现有的低延迟 SNN 算法不同。在与 CIFAR-10 和 ImageNet 数据集上的八个不同设置的实验中,应用动态置信度后平均加速了 40%。2.动态置信度中的决策代理易于构建,在参数空间中高度强健,使其极易实现。3.所提出的方法使得能够可视化任何给定 SNN 的潜力,为当前 SNN 接近目标设置了一个基准。例如,如果一个 SNN 能够在每个输入样本的最合适时间点终止,那么 ResNet-50 SNN 可在平均仅 4.71 个时间步骤内在 ImageNet 上实现高达 82.47% 的准确性。释放 SNN 潜力需要构建高度可靠的决策制定代理并提供高质量的地面真相估计。在这方面,动态置信度是实现 SNN 潜力的有意义的一步。