While the complexity of translating future linear temporal logic (LTL) into automata on infinite words is well-understood, the size increase involved in turning automata back to LTL is not. In particular, there is no known elementary bound on the complexity of translating deterministic $\omega$-regular automata to LTL. Our first contribution consists of tight bounds for LTL over a unary alphabet: alternating, nondeterministic and deterministic automata can be exactly exponentially, quadratically and linearly more succinct, respectively, than any equivalent LTL formula. Our main contribution consists of a translation of general counter-free deterministic $\omega$-regular automata into LTL formulas of double exponential temporal-nesting depth and triple exponential length, using an intermediate Krohn-Rhodes cascade decomposition of the automaton. To our knowledge, this is the first elementary bound on this translation. Furthermore, our translation preserves the acceptance condition of the automaton in the sense that it turns a looping, weak, B\"uchi, coB\"uchi or Muller automaton into a formula that belongs to the matching class of the syntactic future hierarchy. In particular, it can be used to translate an LTL formula recognising a safety language to a formula belonging to the safety fragment of LTL (over both finite and infinite words).
翻译:虽然将未来线性时间逻辑(LTL)转换成无限字数的自动数据的复杂性已经非常清楚,但将自动数据转换回LTL所涉及的规模增加并不十分清楚,特别是,将确定性美元=omega$-omermatata-omomata 转换成LTL的复杂性没有已知的基本约束。我们的第一个贡献包括将确定性美元=omega$-oomega$-omomata-odalmata 转换成OutLTL的复杂性。我们的第一个贡献包括将LTL转换成单字母:交替、非确定性和确定性自动数据自动数据(LTLL),这比任何等值的LTL公式都精确、方形和线性更简洁。我们的主要贡献是将普通的无限制的确定性美元=omodministic $\omega$-omomatata 转换成双倍指数时间取消深度和三倍指数长度的LTLT公式。据我们所知,这是这一翻译中的第一个基本约束。此外,我们的翻译可以保留自动地图的接受条件条件,因为它可以转换一个循环、弱、B\\uchnicallial laxal ladeal ladeal ladeal ladeal ladeal ladeal ladeal lautal lax lautal a fal laxal laxal laftal a fal del del del del del del del lautal del del ladydal del lautal del lax del lautal del lax del laxI be to a fal del a fal del a fal del a fal del a fal fal fal fal fal fal fal fal fal fal fal fal ladal ladaldal ladal ladal ladal ladalal ladal ladal ladal ladal ladal ladal ladal ladal ladalal ladalal ladal ladal ladal lad