While the complexity of translating future linear temporal logic (LTL) into automata on infinite words is well-understood, the size increase involved in turning automata back to LTL is not. In particular, there is no known elementary bound on the complexity of translating deterministic $\omega$-regular automata to LTL. Our first contribution consists of tight bounds for LTL over a unary alphabet: alternating, nondeterministic and deterministic automata can be exactly exponentially, quadratically and linearly more succinct, respectively, than any equivalent LTL formula. Our main contribution consists of a translation of general counter-free deterministic $\omega$-regular automata into LTL formulas of double exponential temporal-nesting depth and triple exponential length, using an intermediate Krohn-Rhodes cascade decomposition of the automaton. To our knowledge, this is the first elementary bound on this translation. Furthermore, our translation preserves the acceptance condition of the automaton in the sense that it turns a looping, weak, B\"uchi, coB\"uchi or Muller automaton into a formula that belongs to the matching class of the syntactic future hierarchy. In particular, it can be used to translate an LTL formula recognising a safety language to a formula belonging to the safety fragment of LTL (over both finite and infinite words).


翻译:虽然将未来线性时间逻辑(LTL)转换成无限字数的自动数据的复杂性已经非常清楚,但将自动数据转换回LTL所涉及的规模增加并不十分清楚,特别是,将确定性美元=omega$-omermatata-omomata 转换成LTL的复杂性没有已知的基本约束。我们的第一个贡献包括将确定性美元=omega$-oomega$-omomata-odalmata 转换成OutLTL的复杂性。我们的第一个贡献包括将LTL转换成单字母:交替、非确定性和确定性自动数据自动数据(LTLL),这比任何等值的LTL公式都精确、方形和线性更简洁。我们的主要贡献是将普通的无限制的确定性美元=omodministic $\omega$-omomatata 转换成双倍指数时间取消深度和三倍指数长度的LTLT公式。据我们所知,这是这一翻译中的第一个基本约束。此外,我们的翻译可以保留自动地图的接受条件条件,因为它可以转换一个循环、弱、B\\uchnicallial laxal ladeal ladeal ladeal ladeal ladeal ladeal ladeal lautal lax lautal a fal laxal laxal laftal a fal del del del del del del del lautal del del ladydal del lautal del lax del lautal del lax del laxI be to a fal del a fal del a fal del a fal del a fal fal fal fal fal fal fal fal fal fal fal fal ladal ladaldal ladal ladal ladal ladalal ladal ladal ladal ladal ladal ladal ladal ladal ladalal ladalal ladal ladal ladal lad

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
Risk and optimal policies in bandit experiments
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月16日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员