Recently, the Natural Language Inference (NLI) task has been studied for semi-structured tables that do not have a strict format. Although neural approaches have achieved high performance in various types of NLI, including NLI between semi-structured tables and texts, they still have difficulty in performing a numerical type of inference, such as counting. To handle a numerical type of inference, we propose a logical inference system for reasoning between semi-structured tables and texts. We use logical representations as meaning representations for tables and texts and use model checking to handle a numerical type of inference between texts and tables. To evaluate the extent to which our system can perform inference with numerical comparatives, we make an evaluation protocol that focuses on numerical understanding between semi-structured tables and texts in English. We show that our system can more robustly perform inference between tables and texts that requires numerical understanding compared with current neural approaches.
翻译:最近,对没有严格格式的半结构化表格研究了自然语言推断(NLI)任务。虽然神经方法在各种类型的非结构化表格和文本之间取得了很高的性能,包括非结构化表格和文本之间的非结构化表格,但是它们仍然难以进行数字类型的推理,例如计数。为了处理数字类型的推理,我们为半结构表格和文本之间的推理提出了一个逻辑推理系统。我们用逻辑表述作为表格和文本的表示方式,并使用模型检查来处理文本和表格之间的数字推理。为了评估我们的系统能够在多大程度上用数字比较来进行推理,我们制定了一个评价协议,侧重于半结构化表格和英文本之间的数字理解。我们表明我们的系统可以更有力地在表格和文本之间进行推理,这些表格和文本需要与当前的神经方法相比较的数值理解。