Poisson thinning is an elementary result in probability, which is of great importance in the theory of Poisson point processes. In this article, we record a couple of characterization results on Poisson thinning. We also consider several free probability analogues of Poisson thinning, which we collectively dub as \emph{free Poisson thinning}, and prove characterization results for them, similar to the classical case. One of these free Poisson thinning procedures arises naturally as a high-dimensional asymptotic analogue of Cochran's theorem from multivariate statistics on the "Wishart-ness" of quadratic functions of Gaussian random matrices. We note the implications of our characterization results in the context of Cochran's theorem. We also prove a free probability analogue of Craig's theorem, another well-known result in multivariate statistics on the independence of quadratic functions of Gaussian random matrices.
翻译:Poisson 瘦化是概率的一个基本结果, 这在 Poisson 点进程理论中非常重要。 在文章中, 我们记录了几个关于 Poisson 瘦化的描述结果。 我们还考虑几个Poisson 瘦化的自由概率类比, 我们集体将它称为 emph{ free Poisson 瘦化, 并证明它们具有特征性结果, 类似于古典案例。 这些自由 Poisson 瘦化程序之一自然产生, 就象Cochran 理论的高维性非抽象类比一样, 来自于关于高斯随机矩阵四边函数“ Wishart-ness” 的多变量统计。 我们注意到我们定性结果在 Cochran 的理论背景下的影响。 我们还证明了Craig 的理论自由概率类比, 这是另一个众所周知的关于高斯 随机矩阵四边函数独立性的多变量统计结果。