Tie-breaker designs trade off a statistical design objective with short-term gain from preferentially assigning a binary treatment to those with high values of a running variable $x$. The design objective is any continuous function of the expected information matrix in a two-line regression model, and short-term gain is expressed as the covariance between the running variable and the treatment indicator. We investigate how to specify design functions indicating treatment probabilities as a function of $x$ to optimize these competing objectives, under external constraints on the number of subjects receiving treatment. Our results include sharp existence and uniqueness guarantees, while accommodating the ethically appealing requirement that treatment probabilities are non-decreasing in $x$. Under such a constraint, there always exists an optimal design function that is constant below and above a single discontinuity. When the running variable distribution is not symmetric or the fraction of subjects receiving the treatment is not $1/2$, our optimal designs improve upon a $D$-optimality objective without sacrificing short-term gain, compared to the three level tie-breaker designs of Owen and Varian (2020) that fix treatment probabilities at $0$, $1/2$, and $1$. We illustrate our optimal designs with data from Head Start, an early childhood government intervention program.
翻译:断铁器设计将一个统计设计目标与一个统计设计目标进行交易,并带来短期收益,因为优先将二进制治疗分配给运行变量美元值高的人。设计目标是在双线回归模型中预期信息矩阵的任何连续功能,短期收益表现为运行变量和处理指标之间的共差。我们调查如何在接受治疗的主体数量受到外部限制的情况下,指定设计功能,表明治疗概率为x美元,以优化这些相互竞争的目标。我们的结果包括:敏锐的存在和独特性保证,同时满足治疗概率不以美元计的道德吸引力要求。在这种制约下,始终有一个最佳设计功能,即运行变量分布不是对称的,或者接受治疗的主体部分不是1/2美元,我们的最佳设计是在不牺牲短期收益的情况下,在不牺牲欧文和维里雅(20年)三级断裂性设计,即治疗概率不以美元计为美元。在这种制约下,始终存在一个最佳设计功能,即低于或高于单一的不连续状态。当运行变量分布时,或者接受治疗的主体部分不是2.5美元时,我们的最佳设计在不牺牲短期收益目标上,我们的最佳设计,而不是以10美元,我们的最佳设计。