Resource provisioning plays a pivotal role in determining the right amount of infrastructure resource to run applications and target the global decarbonization goal. A significant portion of production clusters is now dedicated to long-running applications (LRAs), which are typically in the form of microservices and executed in the order of hours or even months. It is therefore practically important to plan ahead the placement of LRAs in a shared cluster so that the number of compute nodes required by them can be minimized to reduce carbon footprint and lower operational costs. Existing works on LRA scheduling are often application-agnostic, without particularly addressing the constraining requirements imposed by LRAs, such as co-location affinity constraints and time-varying resource requirements. In this paper, we present an affinity-aware resource provisioning approach for deploying large-scale LRAs in a shared cluster subject to multiple constraints, with the objective of minimizing the number of compute nodes in use. We investigate a broad range of solution algorithms which fall into three main categories: Application-Centric, Node-Centric, and Multi-Node approaches, and tune them for typical large-scale real-world scenarios. Experimental studies driven by the Alibaba Tianchi dataset show that our algorithms can achieve competitive scheduling effectiveness and running time, as compared with the heuristics used by the latest work including Medea and LraSched.


翻译:资源提供在确定基础设施资源的适当数量以运行应用程序和瞄准全球去碳化目标方面发挥着关键作用。现在,很大一部分生产集群现在专门用于长期应用(LARC),这些应用通常以微服务形式出现,按小时或甚至数月的顺序执行,因此,实际上重要的是预先计划将上帝军置于一个共同的集群中,以便尽可能减少它们所需的计算节点数量,以减少碳足迹和较低的业务费用。上帝军列表的现有工作往往是应用-不可知性的,没有特别解决上帝军施加的限制性要求,例如合用近距离限制和时间变化的资源要求。在本文件中,我们介绍了在共同的集群中部署大规模上帝军的亲近性-认知性资源提供办法,目的是尽量减少它们所需的计算节点数量,以减少碳足迹和较低的业务费用。我们调查了范围广泛的解决方案算法,这分为三大类:应用中心、诺德-Centric和多点方法,没有特别解决上帝军所施加的限制性要求,例如合用合用近距离限制和时间变化的资源要求。我们提出了一种近距离-认知性的资源供给方法,用于在一个共同的集群内部署大型的大型上帝军,包括由他所驱动的、以显示的最新性天平-智能算算法,我们所利用的、可实现的时空算式的时空算法,以显示的时空算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
60+阅读 · 2020年3月19日
专知会员服务
161+阅读 · 2020年1月16日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月5日
Arxiv
0+阅读 · 2022年10月1日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员