In bridge inspection, engineers should diagnose the observed bridge defects by identifying the factors underlying those defects. Traditionally, engineers search and organize structural condition-related information based on visual inspections. Even following the same qualitative inspection standards, experienced engineers tend to find the critical defects and predict the underlying reasons more reliably than less experienced ones. Unique bridge and site conditions, quality of available data, and personal skills and knowledge collectively influence such a subjective nature of data-driven bridge diagnosis. Unfortunately, the lack of detailed data about how experienced engineers observe bridge defects and identify failure modes makes it hard to comprehend what engineers' behaviors form the best practice of producing reliable bridge inspection. Besides, even experienced engineers could sometimes fail to notice critical defects, thereby producing inconsistent, conflicting condition assessments. Therefore, a detailed cognitive behavior analysis of bridge inspectors is critical for enabling a proactive inspector coaching system that uses inspectors' behavior histories to complement personal limitations. This paper presents a computational framework for revealing engineers' observation and cognitive-behavioral processes to identify bridge defects and produce diagnosis conclusions. The authors designed a bridge inspection game consisting of FEM simulation data and inspection reports to capture and analyze experienced and inexperienced engineers' diagnosis behaviors. Mining these behavioral logs have revealed reusable behavioral process patterns that map critical bridge defects and diagnosis conclusions. The results indicate that the proposed method can proactively share inspection experiences and improve inspection processes' explainability and reliability.


翻译:在桥梁检查中,工程师应该通过查明这些缺陷背后的因素来诊断观察到的桥梁缺陷。传统上,工程师根据视觉检查来搜索和组织与条件有关的结构性信息。即使遵循同样的质量检查标准,有经验的工程师也往往发现关键的缺陷,并比经验较少的人更可靠地预测根本原因。独特的桥梁和现场条件、可用数据的质量以及个人技能和知识共同影响数据驱动桥梁诊断的主观性质。不幸的是,由于缺乏关于有经验的工程师如何观察桥梁缺陷和查明失败模式的详细数据,因此很难理解工程师的行为构成可靠的桥梁检查的最佳做法。此外,即使有经验的工程师有时也可能无法注意到严重缺陷,从而产生不一致和矛盾的状况评估。因此,对桥梁检查员进行详细的认知行为分析至关重要,有助于建立积极主动的检查员辅导系统,利用检查员的行为记录来补充个人局限性。本文件为揭示工程师观察和认知-行为过程以发现缺陷并得出诊断结论提供了一个计算框架。作者设计了一个由FEM模拟数据和检查报告组成的桥梁检查游戏,以收集和分析有经验的、缺乏经验的工程师的诊断性状况。因此,对桥梁检查过程进行详细的认知行为分析,从而能够解释准确性检查过程。

0
下载
关闭预览

相关内容

专知会员服务
158+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员