The automated analysis of digital human communication data often focuses on specific aspects such as content or network structure in isolation. This can provide limited perspectives while making cross-methodological analyses, occurring in domains like investigative journalism, difficult. Communication research in psychology and the digital humanities instead stresses the importance of a holistic approach to overcome these limiting factors. In this work, we conduct an extensive survey on the properties of over forty semi-automated communication analysis systems and investigate how they cover concepts described in theoretical communication research. From these investigations, we derive a design space and contribute a conceptual framework based on communication research, technical considerations, and the surveyed approaches. The framework describes the systems' properties, capabilities, and composition through a wide range of criteria organized in the dimensions (1) Data, (2) Processing and Models, (3) Visual Interface, and (4) Knowledge Generation. These criteria enable a formalization of digital communication analysis through visual analytics, which, we argue, is uniquely suited for this task by tackling automation complexity while leveraging domain knowledge. With our framework, we identify shortcomings and research challenges, such as group communication dynamics, trust and privacy considerations, and holistic approaches. Simultaneously, our framework supports the evaluation of systems and promotes the mutual exchange between researchers through a structured common language, laying the foundations for future research on communication analysis.
翻译:对数字人类通信数据进行自动化分析往往侧重于诸如内容或孤立的网络结构等具体方面,这可以提供有限的视角,同时进行跨方法分析,这种分析发生在调查性新闻、困难的领域;心理学和数字人文学的通信研究相反地强调采取综合办法克服这些限制因素的重要性;在这项工作中,我们对40多个半自动通信分析系统的特性进行广泛调查,并调查这些系统如何涵盖理论通信研究中描述的概念;通过这些调查,我们得出一个设计空间,并根据通信研究、技术考虑和接受调查的方法提出一个概念框架;该框架通过在以下各方面组织的广泛标准描述系统的特点、能力和组成:(1)数据、(2)处理和模型、(3)视觉界面和(4)知识生成;这些标准使得通过视觉分析使数字通信分析正规化,我们认为,在利用领域知识的同时处理自动化的复杂性,对于这项任务特别合适;我们通过我们的框架,我们查明缺陷和研究挑战,例如群体通信动态、信任和隐私考虑以及整体方法;我们的框架支持通过对系统进行评估,并通过共同的语言分析促进研究人员之间结构化的交流基础。