The modeling of dependence between maxima is an important subject in several applications in risk analysis. To this aim, the extreme value copula function, characterised via the madogram, can be used as a margin-free description of the dependence structure. From a practical point of view, the family of extreme value distributions is very rich and arise naturally as the limiting distribution of properly normalised component-wise maxima. In this paper, we investigate the nonparametric estimation of the madogram where data are completely missing at random. We provide the functional central limit theorem for the considered multivariate madrogram correctly normalized, towards a tight Gaussian process for which the covariance function depends on the probabilities of missing. Explicit formula for the asymptotic variance is also given. Our results are illustrated in a finite sample setting with a simulation study.
翻译:在风险分析的若干应用中,对最大值之间的依赖性进行建模是几个应用中的一个重要主题。为此,以狂妄图为特征的极值相交函数可以用作无差值的对依赖性结构的描述。从实际的角度来看,极端值分布的组合非常丰富,自然而然地产生,因为它限制了正常化组件的分布。在本文中,我们调查了数据完全随机缺失的疯狂图的非对称估计值。我们为考虑的多变性狂喜谱正统化提供了功能中心值限制,向一个紧凑的高斯进程提供了功能中心值,而共变函数取决于失踪的概率。还给出了无损差异的公式。我们的结果通过模拟研究的有限抽样环境来说明。