Fluid mechanics is a fundamental field in engineering and science. Solving the Navier-Stokes equation (NSE) is critical for understanding the behavior of fluids. However, the NSE is a complex partial differential equation that is difficult to solve, and classical numerical methods can be computationally expensive. In this paper, we present an innovative approach for solving the NSE using Physics Informed Neural Networks (PINN) and several novel techniques that improve their performance. The first model is based on an assumption that involves approximating the velocity component by employing the derivative of a stream function. This assumption serves to simplify the system and guarantees that the velocity adheres to the divergence-free equation. We also developed a second more flexible model that approximates the solution without any assumptions. The proposed models can effectively solve two-dimensional NSE. Moreover, we successfully applied the second model to solve the three-dimensional NSE. The results show that the models can efficiently and accurately solve the NSE in three dimensions. These approaches offer several advantages, including high trainability, flexibility, and efficiency.


翻译:---- EPINN-NSE: 用于求解 Navier-Stokes 方程的物理启发神经网络的增强版 流体力学是工程和科学中的基础领域。求解 Navier-Stokes 方程 (NSE) 对于理解流体行为是至关重要的。然而,NSE 是一个难以求解的复杂偏微分方程,传统的数值方法可能会有计算成本方面的问题。在本文中,我们提出了一种创新的方法,利用物理启发的神经网络 (PINN) 和若干改进性技术来解决 NSE。第一种模型基于近似假设,通过采用流函数的导数来近似速度分量。这种假设可用于简化系统,并确保速度符合无散条件。我们还开发了第二种更灵活的模型,可以在不做任何假设的情况下近似解。所提出模型可有效解决二维 NSE。此外,我们成功地将第二种模型应用于求解三维 NSE。结果表明,这些模型可以高效准确地解决三维 NSE。这些方法具有高可训练性、灵活性和效率等多个优点。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月25日
Arxiv
0+阅读 · 2023年5月24日
Arxiv
23+阅读 · 2022年2月4日
VIP会员
相关VIP内容
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
SIGIR2019 接收论文列表
专知
18+阅读 · 2019年4月20日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员