Channel capacity plays a crucial role in the development of modern communication systems as it represents the maximum rate at which information can be reliably transmitted over a communication channel. Nevertheless, for the majority of channels, finding a closed-form capacity expression remains an open challenge. This is because it requires to carry out two formidable tasks a) the computation of the mutual information between the channel input and output, and b) its maximization with respect to the signal distribution at the channel input. In this paper, we address both tasks. Inspired by implicit generative models, we propose a novel cooperative framework to automatically learn the channel capacity, for any type of memory-less channel. In particular, we firstly develop a new methodology to estimate the mutual information directly from a discriminator typically deployed to train adversarial networks, referred to as discriminative mutual information estimator (DIME). Secondly, we include the discriminator in a cooperative channel capacity learning framework, referred to as CORTICAL, where a discriminator learns to distinguish between dependent and independent channel input-output samples while a generator learns to produce the optimal channel input distribution for which the discriminator exhibits the best performance. Lastly, we prove that a particular choice of the cooperative value function solves the channel capacity estimation problem. Simulation results demonstrate that the proposed method offers high accuracy.


翻译:在开发现代通信系统的过程中,频道能力发挥着关键作用,因为它代表了信息能够在通信频道上可靠传输的最大速度,然而,对于大多数频道来说,找到封闭式能力表达方式仍然是一项公开的挑战。这是因为它需要执行两项艰巨的任务:(a) 计算频道输入和输出之间的相互信息,以及(b) 在频道输入的信号分配方面最大限度地扩大渠道能力。在本文件中,我们处理这两个任务。在隐含的变异模型的启发下,我们提议一个新的合作框架,为任何类型的没有记忆的频道自动学习频道能力。特别是,我们首先制定新方法,直接从通常用于培训对抗性网络的受歧视者那里估算相互信息,被称为歧视的相互信息估计器(DIME ) 。第二,我们把歧视者纳入合作性频道能力学习框架中,称为CORTCical, 歧视者学会区分依赖性和独立的频道输入输出样本,而发电机则学会为任何类型的无记忆频道输入能力自动学习最佳传播渠道信息的能力。最后,我们证明,我们展示了一种合作性选择方法,即提供一种高精确性的数据。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
31+阅读 · 2021年6月12日
【AAAI2021】信息瓶颈和有监督表征解耦
专知会员服务
20+阅读 · 2021年1月27日
【SIGIR2020】学习词项区分性,Learning Term Discrimination
专知会员服务
15+阅读 · 2020年4月28日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
192+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Disentangled Information Bottleneck
Arxiv
12+阅读 · 2020年12月22日
Arxiv
126+阅读 · 2020年9月6日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员