The analysis of longitudinal data poses a series of issues, but it also gives the chance to observe changes in the unit behavior over time which may be of prime interest. This has been the focus of a huge literature in the context of linear and generalized linear regression which, in the last ten years or so, has moved to the context of linear quantile regression models for continuous responses. In this paper, we present lqmix, a novel R package that helps estimate a class of linear quantile regression models for longitudinal data, in the presence of time-constant and/or time-varying, unit-specific, random coefficients, having unspecific distribution. Model parameters are estimated in a maximum likelihood framework, via an extended EM algorithm, and parameters' standard errors are estimated via a block-bootstrap procedure. The analysis of a benchmark dataset is used to give details of the package functions.


翻译:纵向数据分析提出了一系列问题,但它也提供了观察长期单位行为变化的机会,这些变化可能具有重大意义。这是在线性和普遍线性回归背景下大量文献的焦点,在过去10年左右,这种回归已经转向线性孔状回归模型的背景,以便不断作出反应。在本文中,我们提出一个新型R包件,即帮助估计纵向数据的线性四分位回归模型类别,在存在时间定序和(或)时间变化、单位特定、随机系数和不具体分布的情况下。模型参数参数是通过扩大的EM算法在最大可能性框架内估计的,参数标准错误是通过区块杆程序估计的。对基准数据集的分析用于提供包功能的细节。

0
下载
关闭预览

相关内容

【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
130+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关VIP内容
【2023新书】使用Python进行统计和数据可视化,554页pdf
专知会员服务
130+阅读 · 2023年1月29日
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员