The analysis of longitudinal data poses a series of issues, but it also gives the chance to observe changes in the unit behavior over time which may be of prime interest. This has been the focus of a huge literature in the context of linear and generalized linear regression which, in the last ten years or so, has moved to the context of linear quantile regression models for continuous responses. In this paper, we present lqmix, a novel R package that helps estimate a class of linear quantile regression models for longitudinal data, in the presence of time-constant and/or time-varying, unit-specific, random coefficients, having unspecific distribution. Model parameters are estimated in a maximum likelihood framework, via an extended EM algorithm, and parameters' standard errors are estimated via a block-bootstrap procedure. The analysis of a benchmark dataset is used to give details of the package functions.
翻译:纵向数据分析提出了一系列问题,但它也提供了观察长期单位行为变化的机会,这些变化可能具有重大意义。这是在线性和普遍线性回归背景下大量文献的焦点,在过去10年左右,这种回归已经转向线性孔状回归模型的背景,以便不断作出反应。在本文中,我们提出一个新型R包件,即帮助估计纵向数据的线性四分位回归模型类别,在存在时间定序和(或)时间变化、单位特定、随机系数和不具体分布的情况下。模型参数参数是通过扩大的EM算法在最大可能性框架内估计的,参数标准错误是通过区块杆程序估计的。对基准数据集的分析用于提供包功能的细节。