Image quality assessment (IQA) is an important research topic for understanding and improving visual experience. The current state-of-the-art IQA methods are based on convolutional neural networks (CNNs). The performance of CNN-based models is often compromised by the fixed shape constraint in batch training. To accommodate this, the input images are usually resized and cropped to a fixed shape, causing image quality degradation. To address this, we design a multi-scale image quality Transformer (MUSIQ) to process native resolution images with varying sizes and aspect ratios. With a multi-scale image representation, our proposed method can capture image quality at different granularities. Furthermore, a novel hash-based 2D spatial embedding and a scale embedding is proposed to support the positional embedding in the multi-scale representation. Experimental results verify that our method can achieve state-of-the-art performance on multiple large scale IQA datasets such as PaQ-2-PiQ, SPAQ and KonIQ-10k.
翻译:图像质量评估(IQA)是了解和改进视觉经验的一个重要研究课题。当前最先进的IQA方法基于进化神经网络(CNNs) 。基于CNN的模型的性能常常由于批量培训中的固定形状限制而受到影响。为此,输入图像通常被调整成一个固定形状,造成图像质量退化。为了解决这个问题,我们设计了一个多级图像质量变异器(MUSIQ),处理本地分辨率图像,其大小和侧面比例不一。如果采用多级图像表示,我们提出的方法可以在不同颗粒上捕捉图像质量。此外,还提议了一种基于散列的2D空间嵌入和比例嵌入,以支持在多级表示中定位嵌入。实验结果证实,我们的方法可以在多个大型IQA数据集(如PaQ-2-PiQ、SPQ和KonIQ-10k)上实现最先进的状态性能。