We present an efficient end-to-end pipeline for largescale landmark recognition and retrieval. We show how to combine and enhance concepts from recent research in image retrieval and introduce two architectures especially suited for large-scale landmark identification. A model with deep orthogonal fusion of local and global features (DOLG) using an EfficientNet backbone as well as a novel Hybrid-Swin-Transformer is discussed and details how to train both architectures efficiently using a step-wise approach and a sub-center arcface loss with dynamic margins are provided. Furthermore, we elaborate a novel discriminative re-ranking methodology for image retrieval. The superiority of our approach was demonstrated by winning the recognition and retrieval track of the Google Landmark Competition 2021.


翻译:我们展示了高效的端对端管道,用于大规模地标识别和检索。我们展示了如何结合和加强最近图像检索研究中的概念,并引入了两个特别适合大规模地标识别的架构。我们讨论了一个使用高效网络骨干以及新型混合-双向转换的本地和全球地物(DOLG)的深垂直融合模型,并详细介绍了如何利用渐进方法和动态边际的子中心弧形损失对两个架构进行有效的培训。此外,我们制定了一种新的歧视性的图像检索重新排序方法。我们的方法的优势表现是赢得Google Landmark 2021竞赛的承认和检索轨道。

0
下载
关闭预览

相关内容

从20世纪70年代开始,有关图像检索的研究就已开始,当时主要是基于文本的图像检索技术(Text-based Image Retrieval,简称TBIR),利用文本描述的方式描述图像的特征,如绘画作品的作者、年代、流派、尺寸等。到90年代以后,出现了对图像的内容语义,如图像的颜色、纹理、布局等进行分析和检索的图像检索技术,即基于内容的图像检索(Content-based Image Retrieval,简称CBIR)技术。CBIR属于基于内容检索(Content-based Retrieval,简称CBR)的一种,CBR中还包括对动态视频、音频等其它形式多媒体信息的检索技术。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
最新《Transformers模型》教程,64页ppt
专知会员服务
319+阅读 · 2020年11月26日
深度学习搜索,Exploring Deep Learning for Search
专知会员服务
61+阅读 · 2020年5月9日
专知会员服务
61+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习的快速目标跟踪
AI研习社
13+阅读 · 2018年1月8日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
VIP会员
相关VIP内容
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
深度学习的快速目标跟踪
AI研习社
13+阅读 · 2018年1月8日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员